NEW PERSPECTIVES ON THE GREEN'S FUNCTION FOR QUASI-TEM PLANAR STRUCTURES
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The quasi-static spectral Green's function for
various planar structures is decomposed into a funda-
mental part corresponding to a homogeneous medium and
the remainder. This is used to help formulate the
quasi-~TEM analysis of the coplanar strips whose spec-
tral Green's function is singular and to devise effi-
cient numerical techniques to solve for the quasi-TEM
parameters of single and multiple coupled microstrip
lines and coplanar strips.

Introduction

The Green's function for certain boundary value
problems can be decomposed into a fundamental part
having the singularity of the Green's function and a
well-behaved regular partlsZ, This concept is intro-
duced to the quasi-TEM Fourier spectral domain Green's
function for planar structures as,

Gla) = U(a) + V(a) . (1)

It is seen that U(a), the fundamental part, is related
to the Green's function of the corresponding homogene-
ous problem and then V(a), the remainder, is a well-
behaved function which decays much faster (typically
exponentially as fast) than the original Green's func-
tion. In addition it is seen that U{a) and more impor-
tantly terms involving U(a) in numerical steps can be
inverted analytically for a choice of many basis func-
tions. This leads to an accurate solution for the
characteristics of certain planar structures for which
spectral Green's function is singular at origin such as
the coplanar strip lines and enables us to devise effi-
cient schemes to evaluate the numerical quadratures
required for the computation of the characteristics of
various planar structures.

Some of the results including the formulation of
the coplanar strip line problem and numerical results
for symmetrical, nonsymmetrical, single, and multiple
coupled open microstrip and coplanar strip lines are
presented in this paper to illustrate the highlights of
the decomposition procedure,

Analysis

The spectral domain Green's functions for the
microstrip and the coplanar strip line structures as
shown in Fig. 1 are given by,

5 1
8(e) = T e conTaTn) @

for the microstrip lines and

N 1+ ercothIalh
Ba) = - 3)
eolal{(l + er) + 2 ercoth|a|h}

for the coplanar strips.

As seen from Eq. (3), the Green's function for coplanar
lines has an extra singularity as a + 0 in addition to
the usual source point singularity implied by T(a) ~
0(1/a) as a + = for both structures. This is perhaps
the main reason that the study of the quasi-TEM charac-
teristics of coplanar strip lines has been confined to
approximate conformal transformation3, even though they
have been analyzed by the spectral domain method for
frequency-dependent characteristics® where the problem
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of singularity does not arise. The quasi-TEM charac-
teristics of these structures are evaluated numerically
by solving the following integral equation for unknown
charges in terms of given potentials

o(x) = |

-00

G(x-x") o(x") dx' 4)

This leads to a set of linear equations for which the
matrix elements are definite integrals®. For example,
the use of Tlocal basis approximation with choice of
gate functions (piece-wise constants) for basis func-
tion set and collocation for test function set leads to

N
¢(Xi) = jfl Kijai 2 J=1,2,...,N (5)
where K. = (/) [ G(a)T(a)cos(x;-x, o da (6)
i 0 i
2 ba

The local basis approximation method is used here sim-
ply because it is readily adapted to the problem of
nonsymmetrical and general multiple strips. We now
consider the spectral Green's function for the two
cases as given by Eqs. (2) and (3).

Microstrip Lines

The Green's function of Eq. {2) is decomposed as,

1l-¢
r e-2|alh

Bla) = 75— Gyle) + 7 B(a) = U(e)+¥(a)
r

1+er

(7)

where § (a) = L
0 €0|a|(1+coth|dTﬁ) ’

is the corresponding homogeneous Green's function.

With the above decomposition, it is seen that U(a)
and U(a)(a) can be inverted apalytically and V(a)
decays exponentially faster than G(a) making the evalu-
ation of the integrals as given by Eq. (6) much fast-
er. With the above decomposition and utilizing the
expression for the inverse transform of G(a) as given
by

2.2
Tog 42X, (®)

X

are found to be:

-1 1
F [GO(Q)] " Are
0
the matrix coefficients Kij
[1-1 4,1 >
_+n "n-1 1 N TPRY 4
K].J. = W + p f V(a)T{a)cos(nba)da (9)

0
with
1
2 (n + 5)b
4h -1 2
1,4 (n+ 3)b log{1 + } + 4h tan e

[(n+ $)b)?

and n 2 i-j

The latter integral term in Eq. (9) converges quite
rapidly. It should be noted that, once the terms in-
volving Go(a) are evaluated for homogeneous air medium,
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they need not be recomputed for the inhomogeneous
case. Therefore, the decomposition of the inhomogene-
ous Green's function leads to efficient numerical
schemes by replacing the slowly convergent integrals
with rapidly converging ones and by utilizing the ana-
lytical results as much as possible while avoiding
redundant computations.

Another feature of Eq. (7) and similar ones for
other simple structures worth mentioning is that the
decompgsition process is iterative in nature.
Thus, G{a) can be expanded in an infinite convergent
series, and then, it can be inverted term by term ana-
lytically to give the spatial Green's function which is
otherwise derived from the image method’ as follows.

o l-g
1 . Ln e-zldlhnﬁ (a) (10)

)
n=0 1+8r 0

Each term when inverted by utilizing Eq. (8) leads to

Gla) = gigs
r

o l-¢

1 ryn
= r ()
Zweo(1+er) n=0 1+€r

G(x-x")

2 2
109 {[(2”‘!'1)2] +(X-X2) } (11)
(2nh)“+{x-x")
This equivalence between the spectral and spatial
Green's function has not been explicitly shown to our

knowl edge beyond the implicit understanding of its
inevitability.

Coplanar Strip Lines

Direct integration of Eq. (6) with G(a) as given
by Eq. (3) is not feasible because of the singularity
at @ = 0. This singularity in G(a) as « > o can how-
ever be resolved by the utilization of the regulariza-
tion of generalized function concept6. It is seen that
this is physically equivalent to defining the potential
with reference to some finite point in space. Here, we
decompose the Green's function such that the integrals
like Eq. (6) are decomposed into a part with singulari-
ty which is evaluated analytically by using the regu-
larization or directly by a simple physical example,
and the remainder which is a well-behaved function.
The use of decomposition gives

2
IR — e
®) = 2 Tal 2e
° 2(1+¢2)e la|(1+ —Z5 coth|a|h
r’-o 1+€2
r (12)

U(a) + V(a)

Even though U(a) which is the corresponding homogeneous
Green's function is singular, its inverse transform is
known byb

F-l[ﬁ(a)] =C - 1/(2«30)1og|x—x'| - (13)

In _addjtion, terms involving U(a) Tike U{a)i(a)

or G(a)I™ can be analytically inverted. These are

required to solve for the characteristics of coplanar

strip lines, e.q., Eq. (5). For example, the matrix

elements Kij can be decomposed as

K.. = 1 (E -E )+ 1 fw V(o) (a)cos(nba)da
ij 2ne n-1 n Ty

(14)

where n i-j and E_ # (n+1/2) log|n+1/2]b .
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Fig. 1. Schematics. (a) Microstrips; (b) Coplanar
Strips.

Note that V(a) is of the same form as Eq. (2) and the
later integral term in Eq. (14) can be decomposed fur-
ther into a term that is inverted analytically and a
rapidly converging term.

Results

The numerical results for some typical microstrip
and coplanar stip structures are shown in Figs., 2
through 5. The results for symmetrical three-line
microstrip structures with equal or unequal strip
widths and general single and coupled coplanar strip
lines are presented simply to demonstrate the versatil-
ity of the computational program which has been imple-
mented on the CDC 6400 computer. For a given geometry
and the number of 1lines, the program computes the
quasi-TEM normal mode parameters of the system. These
include the phase constants and the characteristic
impedances of each line for all the normal modes of the
system. The computation time required for each case is
only a fraction of a second. Similar results have been
obtained by applying the decomposition method to other
structures including covered lines and multilayer di-
electric medium.
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(Equal Width)
1)
W, W W
L g R e 85
e H —=£FT
140 (= z =T foff —
130 ) ;2 = 80
1 d
120 - ‘ -
€ = 10,0
110 @ i 0.5 ~7.5
0PN N0 s/= 1.0 ]
A = =]
~ 90F | AN W4 ~7.0
wn N ~\
Z 80 ¢ ‘. . )
P
I NN A e'{ ::--
O 70K ~ t - eff-~65 @
~ NUONN N = — -
o 60N\ Z13 ‘\>-</‘ e W
Y T
501 _>¢ % = 6.0
< \ —~— e
40P 2 -y
VAl
0F \ S N 55
53 O S~ Sre -
20 % s — e TR
e L :
o+ 5.0
0 ! 1 1 1 1
0.2 04 0.6 0.8 1.0 1.2 1.4
W/H
Fig. 3. Microstrip 3-Coupled (Symmetric) Lines

(Unequal Width)

573

€o
~ W, Wy w1+S+W2=const=6.O
€ s IH 8 = 1.0
_______________ € = 10,0
120 - Eo s/i= 1.0 755
- —— e §/H=0.2
'\~£e£.f’__ — S/H 5
1ot 5.0
—
n
= 100} 45
g =
= A
e
o 9} 40
N
80~ 35
70 1 ] L 1 1 30
0.5 1.0 1.5 20 2.5
WI
Fig. 4, Coplanar Stripline (Asymmetric Single)
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